

II Semester B.Sc. Examination, September 2020 (CBCS 14-15 and Onwards/Prior to 2016-17) PHYSICS - II (Repeaters) From Figure 1 Per 1987 **Thermal Physics and Statistical Mechanics**

Time: 3 Hours Max. Marks: 70

> Instruction: Use of Non-programmable, scientific calculator is permitted.

PART - A

Answer any five of the following questions. Each question carries eight marks. $(5 \times 8 = 40)$ 1. a) Write the basic assumptions of Kinetic theory of gases. b) Deduce Boyle's law from PV (2) Mc2. 2. a) Derive the relation for the coefficient obviscosity of a gas on the basis of Kinetic Theory of gases. b) Derive the relation between the coefficient of viscosity and coefficient of (6+2)thermal conductivity of a gas. 3. a) State and explain zeroth law of thermodynamics. (4+4)b) Derive an expression for work done during isothermal process. 4. a) State and explain first law of thermodynamics. b) Using first law of thermodynamics explain: i) Isothermal process ii) Adiabatic process (2+6)iii) Isochoric process.

- 5. a) What are the basic postulates of statistical mechanics?
 - b) Distinguish between distinguishable and indistinguishable particles.
 - c) Distinguish between microscopic and macroscopic states of a system. (4+2+2)

6. Derive Clausius-Clapeyron's latent heat equation and discuss the effect of Pressure on boiling point of a liquid and melting point of a solid.

8

- 7. a) What is Joule-Thomson effect?
 - b) Derive an expression for Joule-Thomson coefficient.

(2+6)

- 8. a) Define Solar constant.
 - b) Describe an experiment to determine the surface temperature of the sun. (2+6)

PART - B

Solve any five of the following problems. Each problem carries four marks.

 $(5 \times 4 = 20)$

- 9. If the rms velocity of hydrogen molecule at NTP is 1.84 Kms⁻¹, calculate the rms velocity of oxygen molecule. Molecular weights of oxygen and hydrogen molecules are 32 and 2 respectively.
- 10. The mean free path of a gas molecule is 6×10^{-8} m and the diameter of the molecule is 5×10^{-10} m. Determine the number of molecules per unit volume of the gas.
 - 11. A heat engine operating on a reversible cycle absorbs 42×10⁴ J of heat from the source, rejects 24.8×10⁴ J of heat to the sink and converts the difference into work. Calculate the efficiency of the engine.
 - 12. The volume of the given mass of gas at NTP is compressed adiabatically to $\frac{1}{4}$ th of its original volume. What is the new Pressure ? Given $\gamma = 1.4$.
 - 13. The pressure of 5 g of water at 20°C is increased from 0 to 400 atmospheres reversibly and adiabatically. Calculate the change in temperature. Specific heat of water = 4200 J Kg⁻¹ K⁻¹, coefficient of volume expansion is 15×10^{-6} K⁻¹, Cp = 4198 JKg⁻¹ K⁻¹ and 1 atmosphere = 10^5 Nm⁻².
 - 14. Using stirling's formula calculate the Percentage error finding log 6!.
 - 15. Calculate the inversion temperature of helium from the following data. $a = 3.41 \times 10^{-3} \,\text{Nm}^4 \,\text{mol}^{-2}$, $b = 2.37 \times 10^{-5} \,\text{m}^3 \,\text{mol}^{-1}$ and $R = 8.3 \,\text{Jk}^{-1} \,\text{mol}^{-1}$.
 - 16. Calculate the energy radiated in one minute by a black body of surface area 200×10^{-4} m² maintained at 227°C. Stefan's constant = 5.67×10^{-8} wm⁻² k⁻⁴.

PART - C

- 17. Answer any five of the following. Each question carries two marks. (5×2=10)
 - a) Does the Pressure increase when a gas is compressed isothermally? Explain.
 - b) Is melting of ice an isothermal change? Explain.
 - c) Can we increase the efficiency of Carnot's engine by decreasing source temperature? Explain.
 - d) Does greater disorder correspond to higher entropy? Explain.
 - e) Does enthalpy change during isobaric process? Explain.
 - f) Does the latent heat of a substance change its temperature? Explain.
 - g) Does the adiabatic demagnetization produce cooling? Explain.
 - h) If the temperature of a black body is raised from 300 K to 600 K by what factor does the rate of emission incrase?

LIBRARY

BMSCW LIBRARY